Acquired Neuropathies

Victoria Lawson, MD
The Ohio State University Medical Center

October 2008
Acquired Inflammatory Diseases of Nerve

- Acute Inflammatory Demyelinating Polyneuropathy
 - AMSAN (acute motor-sensory axonal n.)
 - AMAN (acute motor axonal n.)
 - MFS (Miller Fisher syndrome)

- Chronic Inflammatory Demyelinating Polyneuropathy
 - DADS (distal acquired demyelinating polyradiculoneuropathy)
 - MADSAM (multifocal acquired demyelinating sensory and motor polyradiculoneuropathy)
 - MMN (multifocal motor neuropathy)
AIDP
Guillain-Barré Syndrome

- History precedent illness 60-70%
 - C. jejuni 32%
 - CMV 13%
 - EBV 10%
 - M. pneumoniae 5%
 - Also reported in relation to HIV, Hep A,B,C, influenza

- Autoimmune conditions
 - SLE, lymphoma, GVHD, organ rejection

- Physical insults
 - Surgery
 - Immunizations
 - ?trauma
AIDP
History

- Rapid onset (hours)
- Paresthesias that ascend from feet to hands (large > small fiber loss)
- Flank/back pain 50%
- Weakness
 - variable, from mild distal weakness to severe, vent-dependent
 - 56%: onset in legs
 - 12%: onset in arms
 - 32%: onset in both (Ropper et al, 97)
Strength
- Proximal and distal weakness
- Symmetric

Sensation
- Large > small fiber

DTRs
- Absent

Cranial nerves
- Ophthalmoplegia, ptosis: 5-15%

Autonomic instability
- Cardiac arrhythmias
- Labile BP

Respiratory failure: 30%
Now what?
Lab features

- Week 1
 - Normal CSF (30%)
 - Normal NCS/EMG
 - MRI may show nerve root enhancement

- Week 2+
 - CSF albuminologic dissociation (80%)
 - NCS/EMG
 - Max abnormal 3-8 weeks after onset

- CSF pleocytosis (>10-50 lymphs)
 - Lyme disease, HIV, sarcoidosis
 - Viral hepatitis, EBV, CMV if LFTs ↑
Electrophysiologic features
NCS

- **Earliest abnormalities:**
 - Prolonged DL (NAGBSSG) (Albers et al, ’85)
 - Prolonged/absent F-responses (reflecting early involvement of nerve roots) (NAGBSSG)
 - ↓ CMAP amplitudes (50% 1 week after onset) (Albers et al, ’85)

- **3-8 weeks after onset:**
 - NCV slowing into demyelinating range
 - <80% if amplitudes relatively preserved
 - <70% if not
 - abnormal temporal dispersion
 - conduction block
 - absent F-waves
Uniform slowing

Non-uniform slowing

Abnormal temporal dispersion
Some conduction "fail" electrically because the myelin integrity is insufficient, even though the axon is intact.
Electrophysiologic features

NCS

- Latest abnormalities:
 - Nadir at 1 mo, with improvement over 1 yr
- Correlation with clinical severity
 - Generally none
 - CMAP amplitudes <10-20% normal > poor prognosis
- SNAPs
 - UEs involvement > LE (distinguishes from most sensory neuropathies)
Earliest abnormality:
- Reduced recruitment

Week 2-4
- ↑ abnormal spontaneous activity, p-waves, fibrillation potentials
- Myokymia!
AIDP
Treatment

- PE (200-250ml/kg qod over 10-14 d)
 - NA trial; French trial (↓ time to vent independence, unaided walking, improvement @ 1 mo)
- IVIG (2g/kg over 2-5 d)
 - Dutch IVIG trial; PE Sandoglobulin trial (no difference in efficacy from PE; no added benefit of both)
- ?s
 - Children
 - Mild disease in adults
 - >2 weeks of disease
- Steroids
 - Dutch GBS group: no efficacy
- Others
 - No benefit of IFNβ1a
AIDP
Hospital Care

- Regularly monitor pulmonary function (vital capacity, respiration frequency)
 - initially every 2–4 h
 - in stable phase every 6–12 h

- Regularly check for autonomic dysfunction (blood pressure, heart rate, pupils, ileus)
 - initially continuous monitor heart rate (ECG),
 - Pulse, blood pressure q2–4 h
 - in stable phase every 6–12 h

- Check for swallowing dysfunction

- Recognise and treat pain
 - acute nociceptive pain (try to avoid opioids)
 - chronic neuropathic pain (antiepileptic drugs or antidepressants)

- Prevent and treat infections and pulmonary embolism

- Prevent cornea ulceration due to facial weakness

- Prevent decubitus and contractures
AIDP Course

- Nadir: 2-4 weeks
 - 50%: nadir by 2 weeks
 - 80%: nadir by 3 weeks
 - 90%: nadir by 4 weeks
- Progression > 8 weeks excludes GBS
- Progression 4-8 weeks
 - Subacute IDP
AIDP Prognosis

- 15-50% patients: no residua
- 50-85% patients: some residua even up to 7 years after illness
- 5-10%: severe residua, including fatigue, motor & sensory
- 5% mortality rate
 - Respiratory complications; PE; cardiac arrhythmias; sepsis
- Poor prognostic factors:
 - Age > 50 y
 - Abrupt onset
 - Vent dependence
 - CMAP<10-20% normal
AIDP Variants

AMSAN: Acute Motor & Sensory Axonal Neuropathy

- Clinical features:
 - Indistinguishable from AIDP

- Lab features:
 - Indistinguishable from AIDP

- Electrophysiology:
 - Early: Indistinguishable from AIDP (low amp CMAPs)
 - >1 week: markedly ↓ CMAP/SNAP amps with normal/near normal CVs, DLs

- Treatment:
 - PE/IVIG
AIDP Variants

MFS: Miller Fisher Variant
(continuum with Bickerstaff encephalitis)

- **Clinical features:**
 - Ataxia, areflexia, ophthalmoparesis
 - Other CN deficits also occur
 - Facial weakness, dysphagia, facial paresthesias

- **Lab features:**
 - CSF cytoalbuminologic dissociation (59%)
 - **antiGQ1b** (85%)

- **Electrophysiology:**
 - Markedly ↓ SNAP amps with normal/near normal CVs, DLs
 - CMAPs usu. normal

Treatment:
- Natural history is good recovery
- IVIG?
- Little evidence for PE
AIDP Variants

AMAN: Acute Motor Axonal Neuropathy
Chinese paralytic syndrome

- Clinical features:
 - D>P weakness
 - CN deficits, RF more common (30%)
 - NO SENSORY INVOLVEMENT
 - Occasionally, ↑ DTRs
 - Looks like polio!

- Lab features:
 - Indistinguishable from AIDP

- Electrophysiology:
 - markedly ↓ CMAP amps with normal/near normal CVs, DLs
 - SNAPs normal

- Pathology:
 - Distal conduction block
 - Widespread axonal degeneration

- Treatment:
 - PE/IVIG
 - IVIG treated patients may recover faster but no difference in long term outcome
Chronic Inflammatory Demyelinating Polyradiculoneuropathy
CIDP

- Distinguished from AIDP by the presence of a relapsing-remitting course (MS of the PN)

- Variants
 - DADS (distal acquired demyelinating polyradiculoneuropathy)
 - MADSAM (multifocal acquired demyelinating sensory and motor polyradiculoneuropathy)
 - MMN (multifocal motor neuropathy)
 - MAMA (multifocal acquired motor axonopathy)
 - CISP (chronic immune sensory polyradiculopathy)
CIDP
Clinical features

- Progressive for > 2 mos.
- MS-like courses
 - Chronic monophasic (15%)
 - Chronic relapsing (34%)
 - Stepwise progressive (34%)
 - Steady progressive (15%)
- Risk factors
 - Male
 - Pregnancy
 - Infection
CIDP
Conditions associated with CIDP

- **Infectious**
 - HIV
- **Inflammatory**
 - SLE
 - IBD
 - Post-transplant (GVHD)
- **Metabolic**
 - DM
- **MGUS**
- **Paraneoplastic**
 - POEMS
 - Lymphoma
 - Waldenstroms macroglobulinemia (DADS)
 - Lung, pancreas, colon CA
 - melanoma
- **Toxic**
 - Cyclosporine
 - Tacrolimus
 - TNA blockers
Like, relapsing AIDP

Strength
- Symmetric, proximal and distal weakness

Sensation
- Subjective numbness: 68-80%
- Painful paresthesias 15-50%
- Sensory ataxia with gait imbalance
- SENSORY SIGNS > WEAKNESS, think ANTI-MAG

DTRs
- Areflexia, hyporeflexia

Cranial nerves
- Facial weakness, ophthalmoplegia, dysarthria, dysphagia
- NECK EXTENSOR WEAKNESS (think POEMS)
CIDP
Lab features

- **CSF**
 - 80-95% ↑ protein
 - 10% slightly ↑ lymphs (5/mm³)
 - Very high protein
 - POEMS
 - Cancer
 - ↑ cells in CSF
 - HIV
 - Sarcoidosis
 - Lyme disease
 - Lymphomatous, leukemic infiltration of nerve roots
 - 65% ↑ oligoclonal bands

- **Blood work**
 - 25% have a monoclonal gammopathy (IgA, IgG, IgM)

- **Imaging**
 - Hypertrophy/enhancement of nerve roots and PN

- **NCS/EMG**
 - <2/3 CIDP patients fulfill EPS criteria
CIDP
Electrophysiologic evaluation

- MNCV <70% LLN
- DML prolonged 125-150% ULN
- Absent F waves
- Abnormal temporal dispersion (>9ms between proximal and distal site)
 - Helps with differentiation from axonal and MN disorders, but not necessarily from hereditary forms
- Conduction block
 - Complete
 - Partial: >50% reduction in amplitude of CMAP from distal to proximal site of stimulation
CIDP Pathology

- Sural nerve biopsy

Onion bulbs (demyel/remyel)

Hypertrophy of nerve roots (Schwann cell proliferation)

Endoneurial/perineurial edema
CIDP

Treatment

- **Corticosteroids**
 - Pulse, or
 - 1.5 m/kg qd X 2 wks, then 100 mg qod until improvement or plateau (4-6 mos)
 - Taper 5 mg q2-3 wks

- **PE**
 - Transient effect, requires repeated exchanges
 - 200-250 mL/kg qod 5-6X
 - Better than steroids in uncontrolled DM, HIV
 - Better than IVIG in CRI or severe atherosclerotic cardiovascular disease
 - May be a better choice for a diagnostic-therapeutic trial as the response is faster

- **IVIG**
 - 2g/kg qmonth X 3 mos.
 - IgA deficiency
 - HA, myalgias, flu-like reactions, hyperviscosity

- **Other options**
 - AZT, Cyclosporine, Methotrexate, Cyclophosphamide, Mycophenolate
CIDP Variants

DADS

- **Clinical features:**
 - Distal sensory loss with mild or no distal weakness

- **Lab features:**
 - 67% have monoclonal protein (IgM>others)
 - antiMAG in 67% IgM DADs

- **Electrophysiology:**
 - Indistinguishable from CIDP
 - Less conduction block

- **Treatment:**
 - Steroids/PE/IVIG/cyclophosphamide
 - Response is better in idopathic DADS
 - Response is poor in IgM DADS
CIDP Variants
Multifocal motor neuropathy

- **Clinical features:**
 - Asymmetric
 - Distal > proximal, arms > legs
 - NO SENSORY INVOLVEMENT
 - 2 or more nerves (mononeuritis multiplex)

- **Lab features:**
 - CSF usually normal
 - Antiganglioside antibodies (GM1)
 - No nerve hypertrophy

- **Electrophysiology:**
 - Hallmark of disease is motor conduction block

- **Treatment:**
 - IVIG/cyclophosphamide/(rituximab/interferon beta)
CIDP Variants

MADSAM (MMN + SL)

- **Clinical features:**
 - Asymmetric
 - Distal > proximal, arms > legs
 - SENSORY INVOLVEMENT
 - Chronic sensorimotor mononeuritis multiplex

- **Lab features:**
 - ↑ CSF protein (60-80%)

- **Electrophysiology:**
 - CIDP features in distribution of single nerves
 - Looks like MMN with low amplitude or absent SNAPs

- **Treatment:**
 - IVIG/steroids
 - ?PE/cyclophosphamide/cyclosporine/AZT
How do you approach diagnosis of a neuropathy?
Anatomic approach

- Muscle
 - NMJ
 - Nerve processes (see patterns)
- 1 Nerve
 - (mononeuritis)
- Plexus
- Root
- MN

Anatomic approach: The diagram illustrates the anatomic approach involving various components of the nervous system, including muscle, NMJ, nerve processes, plexus, root, and MN, with a focus on mononeuritis.
Motor neuron

- Upper motor neuron
 - Primary lateral sclerosis
 - Hereditary spastic paraparesis

- Lower motor neuron
 - Progressive muscular atrophy
 - Spinal muscular atrophy
 - Kennedy’s disease
 - Monomelic amyotrophy
 - Polio/Post-polio syndrome
 - Motor neuronopathy (paraneoplastic; hereditary)

- Both
 - ALS
Root

- Compressive
 - HNP
 - OA
- Infectious
 - Herpes zoster
- Cancer
 - Meningeal carcinomatosis/lymphomatosis
Plexus

- Neoplastic
- Diabetic
- Familial
- HNPP-associated
- Idiopathic
Mononeuritis multiplex

- **Infectious**
 - Lyme
 - HIV
 - Leprosy
 - Hepatitis C

- **Inflammatory**
 - Vasculitis
 - Sarcoid
 - Cryoglobulinemia

- **Hereditary**
 - HNPP

- **Systemic disease**
 - Diabetes
 - Waldenstrom’s macroglobulinemia

- **Demyelinating**
 - Multifocal motor neuropathy
 - (CIDP)
Pattern Approach to acquired neuropathies

- Systems (M; S; both)
- Distribution (P; D; both)
- Symmetry (A; S)
- Autonomic involvement
- Pain
- Associated symptoms or “aha” clues
Patterns that lead to a differential: Systems

- **Motor only (Weakness)**
 - MND
 - Muscle
 - NMJ
 - Paraneoplastic motor neuropathy
 - Multifocal motor neuropathy

- **Autonomic**
 - DM
 - Amyloidosis
 - AIDP
 - Vincristine
 - Porphyria
 - HIV
 - Idiopathic
Patterns that lead to a differential: Systems, Distributions, Symmetry

- Symmetric, proximal + distal weakness, M+S
 - AIDP
 - CIDP

- Symmetric, distal weakness, M+S
 - Metabolic (DM, amyloidosis, renal/liver disease, vitamin deficiencies)
 - Drugs/toxins (Chemo, HMs, meds)
 - Hereditary (amyloidosis, CMT)

- Asymmetric, distal weakness, M+S
 - Single
 - Compressive mononeuropathy
 - Radiculopathy
 - Multiple
 - Vasculitis
 - HNPP
 - Infectious
 - Lyme, leprosy, HIV
 - MADSAM
Patterns that lead to a differential: Systems, Distributions, Symmetry

- Asymmetric, proximal + distal weakness, M+S
 - Polyradiculopathy
 - Plexopathy
 - Mononeuritis multiplex

- Sensory only (Numbness)
 - Sensory neuropathy
 - CSPN
 - metabolic (DM, amyloidosis, renal/liver disease, vitamin deficiencies)
 - Ganglionopathy
 - Paraneoplastic
 - Cisplatinum
 - B6 toxicity
 - HIV
 - Sjogren’s syndrome
 - Idiopathic
Young children see 9 dolphins