Neonatal EEG, Seizures and Epilepsy Syndromes

Introduction
- Over the past several decades great progress has been made in neonatal-perinatal medicine
- Survival of premature infants < 1 Kg is common
- Neonatal EEG presents some of the most difficult challenges in EEG interpretation
 - Acquisition is more difficult
 - Numerous features that change almost week to week
 - Many feature have different implications than in older children and adults

Purpose and Utility of Neonatal EEG
- Provides useful information that reflects the function of the neonatal brain
 - assist in determining brain maturation
 - measuring functional integrity of the immature cortex and its connections
 - existence of potentially epileptogenic foci or ongoing seizures
- Useful in assessing prognosis for neonates at risk for neurological sequelae

Objectives
- To review the features of electrocerebral maturation in the pre-term infant
- To review the features of electrocerebral maturation in the term neonate
- To highlight the important clinical aspects of neonatal seizures
Technical Considerations

- Challenges:
 - ICU setting
 - Poor cooperation
 - Small head
 - Critically ill
 - Multiple organs being monitored
 • unusual artifacts
 • difficulty reaching infant's head

Electrodes

- Minimum of 16 electrodes
- Standard 10-20 system
 - combined longitudinal/transverse montage
 - Frontal-temporal, frontal-central, temporal-occipital, and central-occipital longitudinal measurements are double distance
- Use of a single montage throughout recording

Technical Considerations

Technique – Physiological Leads

- Placed to aid in determination of state
 - EOG
 • Helpful in active sleep
 - EMG
 • Differentiating subcortical or peripheral myoclonus from movements associated with epileptiform activity
 - Respiratory monitor (chest wall and/or nasal airflow)
 • Slow and regular patterns of quiet sleep
 • Regular fast patterns of active sleep
 - ECG
 • Left and right arms
 • Pulse and ballistocardiographic artifact

Technique - Recording

- 60 minutes or more - recording of at least one change in state
 - Typically 50-60 minutes to cycle through 3 stages
- Consensus regarding paper speed not established
 - 15 mm/s most common
 - Facilitate delta activity which is the dominant frequency
 - Enhance asymmetries/asynchronies

Neonatal EEG Amplifier Settings

<table>
<thead>
<tr>
<th>Channel</th>
<th>LFP (mV)</th>
<th>HPF (mV)</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOG</td>
<td>0.3-1</td>
<td>50</td>
<td>1 pA/mV</td>
</tr>
<tr>
<td>DOG</td>
<td>1</td>
<td>50</td>
<td>1 pA/mV</td>
</tr>
<tr>
<td>DCG</td>
<td>5</td>
<td>70</td>
<td>Variable</td>
</tr>
<tr>
<td>Resp Min</td>
<td>0.1</td>
<td>15</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Legend: EOG = electro-oculogram, DOG = electro-oculogram, EOG = electro-oculogram, DOG = electro-oculogram, Resp = respiratory, LFP = low frequency filter, HPF = high frequency filter.
General Principles for Analysis

Approach:
- Knowledge of the gestational age and topography of the infant’s head
- Identification of artifacts in the EEG
- Identification of sleep and wake states
- Feature extraction
- Classification of the record as normal or abnormal and clinical correlation provided to clinician

Conceptual Age and Topography

- Accurate estimate of CA
- Description of skull and scalp topography
 - Altered interelectrode resistance/attenuate the recording
 - Scalp swelling and other forms of trauma
 - Meningocele
 - Subdural or epidural fluid collections
 - Skull fractures
 - Low-resistance pathway for electric fields and result in increased voltage
 - Distorted cranial vaults (common after birth trauma) also alter the topography of the EEG.

Artifact Rejection

Cardiac	Cardiac
Respiratory, flutter, and tremor	Respiratory, flutter, and tremor
Vertical, horizontal, and rotary head movements	Vertical, horizontal, and rotary head movements
Electrode “pops” and fontanelle-related pulsations	Electrode “pops” and fontanelle-related pulsations

Head	Head
Electrode “pops” and fontanelle-related pulsations	Electrode “pops” and fontanelle-related pulsations
Face	Face
Grosskinesthesia, eye movements, and blinks	Grosskinesthesia, eye movements, and blinks
Tonic muscle contraction	Tonic muscle contraction
Other	Other
60-Hz electrical Electromechanical device (e.g., ventilators, IV drips)	60-Hz electrical Electromechanical device (e.g., ventilators, IV drips)

Sleep States

- Quiet sleep = NREM sleep, Active sleep = REM sleep in the adult
- Quiet sleep – little eye movements and increased chin EMG activity with regular respirations and ECG
- NREM: often enters active sleep at onset of sleep
 - Continuous EEG with little eye movements, irregular respirations and cardiac rate; decreased chin EMG activity
 - Suppression of amplitudes of delta, theta, and alpha
 - By term, two patterns of REM
 - First REM cycle, the background is continuous, mixed frequencies in the delta, theta, and alpha range with a partiality of faster frequencies
 - Second REM cycle, which occurs after a period of NREM sleep, the background is more continuous, voltage is lower (20-50 mV), and eye movements are faster

<table>
<thead>
<tr>
<th>Physiological Measure</th>
<th>Awake</th>
<th>Awake/Sleep State</th>
<th>Silent Sleep</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMG (Chin)</td>
<td>Phase and tonic</td>
<td>Phase</td>
<td>Tonic</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Irregular</td>
<td>Irregular</td>
<td>Regular</td>
</tr>
<tr>
<td>Eye Movements</td>
<td>Random or pursuits</td>
<td>Rapid eye movements</td>
<td>Absent</td>
</tr>
<tr>
<td>Body Movements</td>
<td>Facial, limbs and body</td>
<td>Sticking and irregular limb movements</td>
<td>None</td>
</tr>
</tbody>
</table>
Sleep States

- healthy controls and with good observations much of sleep is transitional

Delta Brushes

- 26 weeks CA
- Analogous to K complexes in the adult
 - typically occur asynchronously
- Medium- to high-voltage delta intermixed with low- to medium-voltage fast
 - 18- to 22-Hz max centrally
- Prominent feature
 - active sleep by 29-33 weeks
 - quiet sleep 33-38 weeks

Sleep Maturation

Pre-term

- < 28-30 weeks CA record is discontinuous tracé discontinu
- 28-30 weeks CA, some sleep-state differentiation occurs
 - active sleep more continuous than quiet sleep
- Sleep-state differentiation may be difficult until 32-34 wks
- With maturity, the interburst durations decrease, and the amplitude and morphologies of the interburst activity change
- 34-35 weeks CA, other physiological features become increasingly helpful in determining sleep state.

Term

- Tracé alternant (36-38 wks)
 - discontinuous pattern of NREM sleep
 - bursts vs. slow activity (1-4 Hz) alternate with random faster transients at 50-200 mV/s
 - 4-6 seconds and last 2-4 seconds
 - interburst —low-voltage (50-50 mV/s) continuous, somewhat rhythmic activity (theta)
 - infant often has a SWD of NREM state
 - prominent delta delir with some theta rhythms
 - brief periods as early as 35 wks
 - amount of SWD gradually increases 44-46 wks when it almost completely replaces the TA pattern
Timing of EEG Examination

- Timing may have substantial impact on interpretation
- Substantial “nonspecific” normalization may occur after the peak of illness
- Follow up studies are critical
 - After acute illness
 - Important in prematurity to assess maturation

Feature Extraction

- Performed for each state
- Features to be identified include
 - Amplitude
 - Continuity of background activity
 - Frequency
 - Symmetry
 - Reactivity
 - Synchrony
 - Maturational and paroxysmal patterns.

Amplitude

- Electrocerebral inactivity
 - Grave prognosis
 - If not due to postictal state, hypothermia, acute hypoxia, or drug intoxication
 - Majority of infants die or have severe neurological sequelae
 - Benign low-amplitude activity
 - During discontinuous sleep
 - Caput succedaneum, scalp edema, subdural effusions/hematomas

- Low-voltage undifferentiated pattern with background of 5-15 mVs in all states
 - Associated with poor outcomes
 - Observed in a variety of neonatal encephalopathies
 - Less concerning in acute hypoxia

Continuity

- One of the most striking features of the neonatal EEG is discontinuity
- Vary significantly to their CA and state
- No absolute criteria currently exist to determine excessively discontinuous
 - Hahn et al. (IBIs)
 - Conservatively stated, the maximum IBI duration should be less than 40 seconds in infants younger than 30 weeks CA; by term, the IBIs should be less than 6 seconds in duration.
Continuity

- The most obvious abnormality of continuity is burst-suppression
 - bursts of high-voltage (1-10 s) → marked attenuation (<5 mVs)
 - bursts (highly synchronous between hemispheres) contain no age-appropriate activity and is invariant minimally altered by stimuli, and persistent
- Difficulty in PT (<34 wks) owing to discontinuous periods of nearly absent activities between bursts
- Testing for reactivity
- In young PT infants, serial recordings are advisable

Frequency

- Records that are excessively slow or fast are unusual in neonates
- Rarely, a neonatal record consists of diffuse delta activity in both waking and sleep states, minimal theta or faster frequencies, and poor reactivity
- When these conditions persist longer than 2 weeks in FT neonates, the prognosis is poor.

Symmetry

- **Amplitude and waveform composition**
 - No universal agreement for amplitude
 - Guideline - abnormal if amplitude difference exceeds 2:1
 - Transient interhemispheric asymmetry is likely a normal variant

Synchrony

- CNS maturation in the developing neonate
- **Asynchrony** – bursts of morphological similar activity, homologous head region separated by more than 1.5-2.0 s
- **Assessed during TA and NREM sleep**
- Hypersynchrony < 30 weeks
 - Pathophysiology unknown
- > 30 weeks asynchronous bursts
 - 31-32 wks 70% synchronous
 - 33-34 wks 80% synchronous
 - 35-36 wks 85% synchronous
 - > 37 wks 100% synchronous
Maturation

- From PT to FT and beyond occurs in a predictable time-linked fashion
 - Related to anatomical and functional changes
 - Anatomic appearance
 - Synaptic connectivity
 - Time-dependent genetic expression of neurotransmitter receptor subunits
- EEG a valuable tool in assessing central nervous system physiological maturation

EEG Ontogeny

- **24-20 weeks**
 - Discontinuous
 - Brief periods of moderate-amplitude activity
 - Delta brushes
 - Burst of rhythmic occipital and temporal theta
 - BI 6-12 s
 - Although infant clinically cycles through awake/sleep, little difference in EEG
 - No definite state organization

EEG Ontogeny

- **30-32 weeks**
 - First appears some distinguishing features of wake/sleep
 - Wake and active sleep relatively more continuous – with longer BI’s
 - Bursts still occipital delta with brushes
 - Burst of rhythmic theta are more temporal than occipital
 - BI 5-8 seconds
 - *Tracé discontinu*
 - Some reactivity to external stimulation

EEG Ontogeny

- **33-34 weeks**
 - Active and quiet sleep are more clearly distinguishable
 - Less of the EEG is indeterminate
 - In awake and sleep EEG is more continuous
 - Occipital delta fading and more rhythmic temporal theta
 - Delta brushes more common in quiet sleep (prior to this age more in awake/active sleep)
 - BI’s 5-8 seconds
EEG Ontogeny

- **35-36 weeks**
 - Behavioral states easily distinguishable
 - Definite and reproducible reactivity to external stimulation
 - Continuous in wakefulness in active sleep
 - Admixed frequencies from delta to beta
 - Few delta brushes
 - Quiet sleep remains discontinuous
 - IBI’s 4-6 s — tracé alternant
 - Delta brushes more abundant in quiet sleep

- **37-40 weeks**
 - Clearly recognizable states
 - Tracé alternant — IBI’s 2-4 s, all bursts are synchronous
 - If sleep persists continuous moderate to high amplitude delta activity — CSWS
 - Delta brushes in quiet sleep

- **41-44 weeks**
 - Delta brushes disappear by 44 weeks
 - Moderate to low amplitude mixed frequencies
 - Occasional biphasic lambda waves
 - CSWS replaces Tracé alternant except quiet sleep
 - IBI’s 2-4 s

- **45-46 weeks**
 - Appearance of spindles in CSWS
 - Not well synchronized
 - 12-14 Hz
EEG Ontogeny

• 40-42 wks
 – no delta brushes
 – complete interhemispheric synchrony between bursts of TA is observed
 – infant should cycle through clear sleep states
• 44 wks continuous slow-wave pattern should be predominant during NREM sleep
• 48 wks
 – TA should be minimal
 – NREM sleep dominated by high-voltage slow-wave activity
 – Some sleep spindles also should emerge

CR 1 d old male, FT infant

• Transferred in to NICU at 5 hours for ?seizures
• Recurrent periods of apnea with R eye deviation and sucking/chewing movement
• Normal pregnancy, term delivery
• ROM x 35 hours. Prolonged 2nd stage of 3.5 hours. Were prepping for C/S when mom delivered.
• Babe flat at birth and required bag and mask ventilation for 5 minutes. Following that, floppy and not interested in feeding

Neonatal seizures

• Is it a seizure? Need to consider other phenomena (jitteriness, posturing, sleep myoclonus)
• frequently partial rather than generalized
• usually reflect serious underlying neurologic disease

Etiologies to consider

• Hypoxic-ischemic injury – 2/3 of cases
• Infection (meningitis, encephalitis)
• Vascular (intracranial hemorrhage, infarction, venous thrombosis)
• Metabolic (transient metabolic, inborn errors of metabolism)
 – Pyridoxine dependent seizures
• Cerebral malformation
• Idiopathic
• Familial
Clinical classification of neonatal seizures

- **Clonic (25%)**
 - Focal (unifocal, multifocal)
 - Hemiconvulsive
 - Axial

- **Tonic (20%)**
 - Focal (limb, asymmetric truncal posturing, eye deviation)
 - Generalized

- **Myoclonic (25%)**
 - Focal
 - Generalized (commonly no EEG)

- **Motor automatisms**
 - Oral-buccal-lingual
 - Ocular (excluding tonic deviation)
 - Movements of progression (swimming, bicycling)

- **Other uncommon manifestations**
 - Cessation of motor activity
 - Infantile spasms
 - Apnea (rarely a seizure when occurring alone)

Diagnostic workup of neonatal seizures

- Serum glucose, calcium, magnesium, ammonia, lactate, pH, and a complete chemistry panel
- Cerebrospinal fluid
- Cranial ultrasound
- EEG with infusion of pyridoxine
- Toxicology screen
- Urine organic acids, serum and cerebrospinal fluid amino acids
- Maternal and fetal titers for congenital infection
- CT scan (hemorrhage and calcium) or MRI scan (cerebral malformation, ischemia)

Treatment

- Treat underlying cause
- Phenobarb (Loading 20 mg/kg IV, further boluses of 5-10 mg/kg to total dose of 40 mg/kg. Maintenance 5mg/kg/24h)
- Midazolam
- Phenytoin (Loading 20 mg/kg. Maintenance 5mg/kg/24h)
- If due to HIE, can usually stop AEDs after 48-72 hours

Neonatal seizures: long-term outcome

- High mortality (30%) and morbidity (50%) of survivors
- Approximately 30% of survivors develop epilepsy
- Worst outcome in infants with hypoxic-ischemic encephalopathy, meningitis, and cerebral malformations
- Better outcome with transient neonatal hypocalcemia, idiopathic and familial seizures, and stroke
- Neonatal EEG, neurologic examination, and imaging results are best predictors of outcome
Benign Familial Neonatal Convulsions

- Autosomal dominant (85% penetrance)
- Seizures begin 3rd day of life
- Clonic, tonic and partial often with automatisms
- Neurologically normal
- Most have spontaneous remission
 - 10-15% will have subsequent epilepsy usually generalized - generalized seizures
- K+ channel gene (chromosomes 20 and 8)

Early Myoclonic Encephalopathy (EME)

- Very early onset (<28 days) – often first hours
- Ictal phenomena
 - Partial or fragmentary erratic myoclonus
 - Face and limbs
 - Partial motor seizure
 - Sometimes massive myoclonus
 - Late occurrence of massive myoclonus
- EEG shows suppression burst pattern
- Usually cryptogenic, metabolic non ketotic hyperglycenemia

EME

- Treatment
 - Resistant to anti-convulsants and ACTH
- Prognosis
 - Neurological development remains absent or rudimentary
 - Death in about 50% in first year of life
Conclusions

• Often technically difficult with challenges in interpretation
• Provides useful information that reflects function of neonatal brain
• Useful in assessing prognosis for neurologic sequelae